Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
1.
Nature ; 627(8002): 189-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355798

RESUMO

Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.


Assuntos
NADPH Oxidase 2 , Fagócitos , Humanos , Elétrons , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Heme/química , Heme/metabolismo , NADP/metabolismo , NADPH Oxidase 2/química , NADPH Oxidase 2/metabolismo , Fagócitos/enzimologia , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Superóxidos/metabolismo , Ligação Proteica
2.
Hypertension ; 76(3): 827-838, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683902

RESUMO

NOX5 (NADPH oxidase 5) is a homolog of the gp91phox subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown. Because NOX5 is a Ca2+-sensitive, procontractile NOX isoform, we questioned whether it plays a role in cardiac hypertrophy. Studies were performed in (1) cardiac tissue from patients undergoing heart transplant for cardiomyopathy and heart failure, (2) NOX5-expressing rat cardiomyocytes, and (3) mice expressing human NOX5 in a cardiomyocyte-specific manner. Cardiac hypertrophy was induced in mice by transverse aorta coarctation and Ang II (angiotensin II) infusion. NOX5 expression was increased in human failing hearts. Rat cardiomyocytes infected with adenoviral vector encoding human NOX5 cDNA exhibited elevated reactive oxygen species levels with significant enlargement and associated increased expression of ANP (atrial natriuretic peptides) and ß-MHC (ß-myosin heavy chain) and prohypertrophic genes (Nppa, Nppb, and Myh7) under Ang II stimulation. These effects were reduced by N-acetylcysteine and diltiazem. Pressure overload and Ang II infusion induced left ventricular hypertrophy, interstitial fibrosis, and contractile dysfunction, responses that were exaggerated in cardiac-specific NOX5 trangenic mice. These phenomena were associated with increased reactive oxygen species levels and activation of redox-sensitive MAPK (mitogen-activated protein kinase). N-acetylcysteine treatment reduced cardiac oxidative stress and attenuated cardiac hypertrophy in NOX5 trangenic. Our study defines Ca2+-regulated NOX5 as an important NOX isoform involved in oxidative stress- and MAPK-mediated cardiac hypertrophy and contractile dysfunction.


Assuntos
Acetilcisteína/farmacologia , Cardiomegalia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fagócitos/enzimologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Vasoconstritores/farmacologia , Miosinas Ventriculares/metabolismo
3.
Adv Exp Med Biol ; 1246: 153-177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32399830

RESUMO

The key purpose of phagocytosis is the destruction of pathogenic microorganisms. The phagocytes exert a wide array of killing mechanisms that allow mastering the vast majority of pathogens. One of these mechanisms consists in the production of reactive oxygen species inside the phagosome by a specific enzyme, the phagocyte NADPH oxidase. This enzyme is composed of 6 proteins that need to assemble to form a complex on the phagosomal membrane. Multiple signaling pathways tightly regulate the assembly. We briefly summarize key features of the enzyme and its regulation. We then focus on several related topics that address the activity of the NADPH oxidase during phagocytosis. Novel fluorescence microscopy techniques combined with fluorescent protein labeling of NADPH oxidase subunits opened the view on the structure and dynamics of these proteins in living cells. This combination revealed details of the role of anionic phospholipids in the control of phagosomal ROS production. It also added critical information to propose a 3D model of the complex between the cytosolic subunits prior to activation, in complement to other structural data on the oxidase.


Assuntos
NADPH Oxidases/metabolismo , Fagossomos/enzimologia , Humanos , Fagócitos/citologia , Fagócitos/enzimologia , Fagócitos/metabolismo , Fagocitose , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331954

RESUMO

Group A Streptococcus (GAS) commonly causes pharyngitis and skin infections. Little is known why streptococcal pharyngitis usually does not lead to pneumonia and why the skin is a favorite niche for GAS. To partially address these questions, the effectiveness of neutrophils in clearing wild-type (wt) M1T1 GAS strain MGAS2221 from the lung and from the skin was examined in murine models of intratracheal pneumonia and subcutaneous infection. Ninety-nine point seven percent of the MGAS2221 inoculum was cleared from the lungs of C57BL/6J mice at 24 h after inoculation, while there was no MGAS2221 clearance from skin infection sites. The bronchial termini had robust neutrophil infiltration, and depletion of neutrophils abolished MGAS2221 clearance from the lung. Phagocyte NADPH oxidase but not myeloperoxidase was required for MGAS2221 clearance. Thus, wt M1T1 GAS can be cleared by neutrophils using an NADPH oxidase-dependent mechanism in the lung. MGAS2221 induced robust neutrophil infiltration at the edge of skin infection sites and throughout infection sites at 24 h and 48 h after inoculation, respectively. Neutrophils within MGAS2221 infection sites had no nuclear staining. Skin infection sites of streptolysin S-deficient MGAS2221 ΔsagA were full of neutrophils with nuclear staining, whereas MGAS2221 ΔsagA infection was not cleared. Gp91phox knockout (KO) and control mice had similar GAS numbers at skin infection sites and similar abilities to select SpeB activity-negative (SpeBA-) variants. These results indicate that phagocyte NADPH oxidase-mediated GAS killing is compromised in the skin. Our findings support a model for GAS skin tropism in which GAS generates an anoxic niche to evade phagocyte NADPH oxidase-mediated clearance.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Pulmão/enzimologia , NADPH Oxidases/imunologia , Neutrófilos/enzimologia , Infecções Estreptocócicas/enzimologia , Streptococcus pyogenes/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Feminino , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Especificidade de Órgãos , Fagócitos/enzimologia , Fagócitos/imunologia , Pele/imunologia , Pele/microbiologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Estreptolisinas/deficiência , Estreptolisinas/genética , Estreptolisinas/imunologia
5.
Methods Mol Biol ; 1982: 75-101, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172467

RESUMO

The NADPH oxidase NOX2 complex consists of assembled cytosolic and redox membrane proteins. In mammalian cells, natural arachidonic acid (cis-AA), released by activated phospholipase-A2, plays an important role in the activation of the NADPH oxidase, but the mechanism of action of cis-AA is still a matter of debate. In cell-free systems, cis-AA is commonly used for activation although its structural effects are still unclear. Undoubtedly cis-AA participates in the synergistic multi-partner assembly that can be hardly studied at the molecular level in vivo due to cellular complexity. The capacity of this anionic amphiphilic fatty acid to activate the oxidase is mainly explained by its ability to disrupt intramolecular bonds, mimicking phosphorylation events in cell signaling and therefore allowing protein-protein interactions. Interestingly the geometric isomerism of the fatty acid and its purity are crucial for optimal superoxide production in cell-free assays. Indeed, optimal NADPH oxidase assembly was hampered by the substitution of the cis form by the trans forms of AA isomers (Souabni et al., BBA-Biomembranes 1818:2314-2324, 2012). Structural analysis of the changes induced by these two compounds, by circular dichroism and by biochemical methods, revealed differences in the interaction between subunits. We describe how the specific geometry of AA plays an important role in the activation of the NOX2 complex.


Assuntos
Ácido Araquidônico/metabolismo , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Ácido Araquidônico/química , Fracionamento Celular , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Sistema Livre de Células , Colorimetria , Ativação Enzimática , Isomerismo , Estrutura Molecular , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/química , NADPH Oxidases/isolamento & purificação , Neutrófilos/enzimologia , Fagócitos/imunologia , Proteínas Recombinantes de Fusão , Análise Espectral
6.
Methods Mol Biol ; 1982: 121-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172470

RESUMO

NOX family NADPH oxidases deliberately produce reactive oxygen species and thus contribute to a variety of biological functions. Of seven members in the human family, the three oxidases NOX2, NOX1, and NOX3 form a heterodimer with p22phox and are regulated by soluble regulatory proteins: p47phox, its related organizer NOXO1; p67phox, its related activator NOXA1; p40phox; and the small GTPase Rac. Activation of the phagocyte oxidase NOX2 requires p47phox, p67phox, and GTP-bound Rac. In addition to these regulators, p40phox plays a crucial role when NOX2 is activated during phagocytosis. On the other hand, NOX1 activation prefers NOXO1 and NOXA1, although Rac is also involved. NOX3 constitutively produces superoxide, which is enhanced by regulatory proteins such as p47phox, NOXO1, and p67phox. Here we describe mechanisms for NOX activation with special attention to the soluble regulatory proteins.


Assuntos
Proteínas de Transporte/metabolismo , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Proteínas de Transporte/química , Ativação Enzimática , Humanos , Isoenzimas , NADPH Oxidases/genética , Oxirredução , Fagócitos/enzimologia , Fagócitos/metabolismo , Fagocitose , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Espécies Reativas de Oxigênio/metabolismo
7.
J Biol Chem ; 294(11): 3824-3836, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30630949

RESUMO

Phagocyte NADPH oxidase produces superoxide anions, a precursor of reactive oxygen species (ROS) critical for host responses to microbial infections. However, uncontrolled ROS production contributes to inflammation, making NADPH oxidase a major drug target. It consists of two membranous (Nox2 and p22phox) and three cytosolic subunits (p40phox, p47phox, and p67phox) that undergo structural changes during enzyme activation. Unraveling the interactions between these subunits and the resulting conformation of the complex could shed light on NADPH oxidase regulation and help identify inhibition sites. However, the structures and the interactions of flexible proteins comprising several well-structured domains connected by intrinsically disordered protein segments are difficult to investigate by conventional techniques such as X-ray crystallography, NMR, or cryo-EM. Here, we developed an analytical strategy based on FRET-fluorescence lifetime imaging (FLIM) and fluorescence cross-correlation spectroscopy (FCCS) to structurally and quantitatively characterize NADPH oxidase in live cells. We characterized the inter- and intramolecular interactions of its cytosolic subunits by elucidating their conformation, stoichiometry, interacting fraction, and affinities in live cells. Our results revealed that the three subunits have a 1:1:1 stoichiometry and that nearly 100% of them are present in complexes in living cells. Furthermore, combining FRET data with small-angle X-ray scattering (SAXS) models and published crystal structures of isolated domains and subunits, we built a 3D model of the entire cytosolic complex. The model disclosed an elongated complex containing a flexible hinge separating two domains ideally positioned at one end of the complex and critical for oxidase activation and interactions with membrane components.


Assuntos
Citosol/enzimologia , Modelos Moleculares , NADPH Oxidases/química , NADPH Oxidases/metabolismo , Imagem Óptica , Fagócitos/enzimologia , Animais , Células COS , Sobrevivência Celular , Células Cultivadas , Chlorocebus aethiops , Simulação por Computador , Microscopia de Fluorescência , Oxigênio/análise , Conformação Proteica
8.
Dev Comp Immunol ; 89: 152-162, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144489

RESUMO

Cathepsin L1 (CTSL1) is a lysosomal cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of immune response against pathogen infection based on the proteolytic activity. In the present study, a CTSL1 homologue (designated as CgCTSL1) was identified from Crassostrea gigas. It contained a typically single Pept_C1 domain with three conserved catalytically essential residues (Gln25, His135 and Asn178). The mRNA of CgCTSL1 was ubiquitously expressed in oyster tissues with the highest expression level in important immune tissues such as gill and hemocytes. CgCTSL1 proteins were mainly detected in gill and hepatopancreas by immunohistochemistry. Recombinant CgCTSL1 (rCgCTSL1) exhibited proteolytic activity to cleave the substrate Ac-FR-amino-4-trifluoromethyl coumarin (AFC) in a dose-dependent manner, and the inhibitor could reduce its proteolytic activity. After the interference of CgCTSL1 mRNA, the proteolytic activity of oyster hemocytes was significantly down-regulated with the released AFC fluorescence value decreasing from 375.84 to 179.21 (p < 0.05). Flow cytometry analysis revealed that the expression of CgCTSL1 protein was higher in phagocytes with the mean fluorescence intensity (MFI) value of 21,187 (4.13-fold, p < 0.01) compared to the MFI value of 5,130 in non-phagocytic hemocytes. The further confocal analysis demonstrated that the actively phagocytic hemocytes with green bead signals were co-localized with stronger CgCTSL1 positive signals. The mRNA expression levels of CgCTSL1 in phagocyte-like sub-populations of granulocytes and semi-granulocytes were 298.12-fold (p < 0.01) and 2.75-fold (p < 0.01) of that in agranulocytes, respectively. Western blotting analysis of the hemocyte proteins revealed that CgCTSL1 was relatively abundant in granulocytes and semi-granulocytes compared to that in agranulocytes. These results collectively suggested that CgCTSL1, a CTSL1 homologue highly expressed in phagocyte-like hemocytes, was possibly involved in cellular immune response dependent on its conserved proteolytic activity, which might provide clues for the divergence between phagocytes and non-phagocytic hemocytes as well as the identification of promising molecular markers for phagocytes in oyster C. gigas.


Assuntos
Catepsina L/imunologia , Crassostrea/enzimologia , Crassostrea/imunologia , Sequência de Aminoácidos , Animais , Catepsina L/genética , Catepsina L/metabolismo , Crassostrea/genética , Expressão Gênica , Hemócitos/enzimologia , Hemócitos/imunologia , Fagócitos/enzimologia , Fagócitos/imunologia , Filogenia , Proteólise , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
9.
Free Radic Biol Med ; 125: 44-52, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29953922

RESUMO

The phagocyte NADPH oxidase is a multi subunit protein complex that generates reactive oxygen species at cell membranes and within phagosomes. It is essential for host defence as evidenced by the severe immunodeficiency syndrome caused by a loss of one of the subunits. This is known as chronic granulomatous disease (CGD). However, the phagocyte NADPH oxidase also has a key role to play in regulating immunity and it is notable that chronic granulomatous disease is also characterised by autoimmune and autoinflammatory manifestations. This is because reactive oxygen species play a role in regulating signalling through their ability to post-translationally modify amino acid residues such as cysteine and methionine. In this review, I will outline the major aspects of innate immunity that are regulated by the phagocyte NADPH oxidase, including control of transcription, autophagy, the inflammasome and type 1 interferon signalling.


Assuntos
Doenças Autoimunes/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Animais , Doenças Autoimunes/patologia , Autofagia , Humanos , Inflamação/patologia , Transdução de Sinais
10.
Int J Mol Sci ; 19(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734661

RESUMO

The balance between various cellular subsets of the innate and adaptive immune system and microbiota in the gastrointestinal tract is carefully regulated to maintain tolerance to the normal flora and dietary antigens, while protecting against pathogens. The intestinal epithelial cells and the network of dendritic cells and macrophages in the lamina propria are crucial lines of defense that regulate this balance. The complex relationship between the myeloid compartment (dendritic cells and macrophages) and lymphocyte compartment (T cells and innate lymphoid cells), as well as the impact of the epithelial cell layer have been studied in depth in recent years, revealing that the regulatory and effector functions of both innate and adaptive immune compartments exhibit more plasticity than had been previously appreciated. However, little is known about the metabolic activity of these cellular compartments, which is the basic function underlying all other additional tasks the cells perform. Here we perform intravital NAD(P)H fluorescence lifetime imaging in the small intestine of fluorescent reporter mice to monitor the NAD(P)H-dependent metabolism of epithelial and myeloid cells. The majority of myeloid cells which comprise the surveilling network in the lamina propria have a low metabolic activity and remain resting even upon stimulation. Only a few myeloid cells, typically localized at the tip of the villi, are metabolically active and are able to activate NADPH oxidases upon stimulation, leading to an oxidative burst. In contrast, the epithelial cells are metabolically highly active and, although not considered professional phagocytes, are also able to activate NADPH oxidases, leading to massive production of reactive oxygen species. Whereas the oxidative burst in myeloid cells is mainly catalyzed by the NOX2 isotype, in epithelial cells other isotypes of the NADPH oxidases family are involved, especially NOX4. They are constitutively expressed by the epithelial cells, but activated only on demand to ensure rapid defense against pathogens. This minimizes the potential for inadvertent damage from resting NOX activation, while maintaining the capacity to respond quickly if needed.


Assuntos
Intestino Delgado/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Animais , Enterócitos/enzimologia , Enterócitos/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Intestino Delgado/enzimologia , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , NADPH Oxidase 2/genética , NADPH Oxidase 4/genética , NADPH Oxidases/genética , Fagócitos/enzimologia , Fagócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Mech Ageing Dev ; 172: 30-34, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29103982

RESUMO

The role of NADPH oxidase in ageing is debated because of the dual roles of free radicals, toxic though necessary. In this paper we summarize some results about two aspects linked to the regulation of the activity of phagocyte NADPH oxidase (Nox2), encountered frequently in elderly people: inflammation and hypercholesterolemia. In the presence of a high amount of reactive oxygen species (ROS) created by itself or by any other source, the enzyme activity is mostly lowered. Oxidation of the membrane and/or of one of the cytosolic partners could be responsible for this loss of activity. However using a cell free system, we had also shown that a low amount of ROS could activate this enzyme. Similarly, cholesterol has a similar dual role, either activating or inhibiting. In in vitro cell free system with neutrophil membranes from healthy donors, the addition, as well as the removal of cholesterol, diminishes the Nox2 activity. The activity of Nox2 is lowered in neutrophils of untreated hypercholesterolemic patients. Finally oxysterols (25-hydroxy-cholesterol or 5α, 6α - epoxy-cholesterol) do not induce effects different from that of non-oxidized cholesterol. These findings are in agreement with the Janus role of NADPH oxidase, the main source of non-mitochondrial ROS.


Assuntos
Envelhecimento/metabolismo , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Fagócitos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/patologia , Animais , Membrana Celular/enzimologia , Membrana Celular/patologia , Humanos , Hipercolesterolemia/enzimologia , Hipercolesterolemia/patologia , Inflamação/enzimologia , Inflamação/patologia , Oxirredução , Oxisteróis/metabolismo , Fagócitos/patologia
12.
mBio ; 8(6)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114025

RESUMO

Transmembrane NADPH oxidase (NOX) enzymes have been so far only characterized in eukaryotes. In most of these organisms, they reduce molecular oxygen to superoxide and, depending on the presence of additional domains, are called NOX or dual oxidases (DUOX). Reactive oxygen species (ROS), including superoxide, have been traditionally considered accidental toxic by-products of aerobic metabolism. However, during the last decade it has become evident that both O2•- and H2O2 are key players in complex signaling networks and defense. A well-studied example is the production of O2•- during the bactericidal respiratory burst of phagocytes; this production is catalyzed by NOX2. Here, we devised and applied a novel algorithm to search for additional NOX genes in genomic databases. This procedure allowed us to discover approximately 23% new sequences from bacteria (in relation to the number of NOX-related sequences identified by the authors) that we have added to the existing eukaryotic NOX family and have used to build an expanded phylogenetic tree. We cloned and overexpressed the identified nox gene from Streptococcus pneumoniae and confirmed that it codes for an NADPH oxidase. The membrane of the S. pneumoniae NOX protein (SpNOX) shares many properties with its eukaryotic counterparts, such as affinity for NADPH and flavin adenine dinucleotide, superoxide dismutase and diphenylene iodonium inhibition, cyanide resistance, oxygen consumption, and superoxide production. Traditionally, NOX enzymes in eukaryotes are related to functions linked to multicellularity. Thus, the discovery of a large family of NOX-related enzymes in the bacterial world brings up fascinating questions regarding their role in this new biological context.IMPORTANCE NADPH oxidase (NOX) enzymes have not yet been reported in bacteria. Here, we carried out computational and experimental studies to provide the first characterization of a prokaryotic NOX. Out of 996 prokaryotic proteins showing NOX signatures, we initially selected, cloned, and overexpressed four of them. Subsequently, and based on preliminary testing, we concentrated our efforts on Streptococcus SpNOX, which shares many biochemical characteristics with NOX2, the referent model of NOX enzymes. Our work makes possible, for the first time, the study of pure forms of this important family of enzymes, allowing for biophysical and molecular characterization in an unprecedented way. Similar advances regarding other membrane protein families have led to new structures, further mechanistic studies, and the improvement of inhibitors. In addition, biological functions of these newly described bacterial enzymes will be certainly discovered in the near future.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Streptococcus pneumoniae/genética , Algoritmos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Bases de Dados Genéticas , Transporte de Elétrons , Humanos , NADPH Oxidase 2/química , NADPH Oxidase 2/genética , NADPH Oxidases/química , NADPH Oxidases/isolamento & purificação , Oxirredução , Estresse Oxidativo , Fagócitos/enzimologia , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Streptococcus pneumoniae/enzimologia
13.
Free Radic Biol Med ; 113: 1-15, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28916473

RESUMO

NADPH oxidases (NOX) have many biological roles, but their regulation to control production of potentially toxic ROS molecules remains unclear. A previously identified insertion sequence of 21 residues (called NIS) influences NOX activity, and its predicted flexibility makes it a good candidate for providing a dynamic switch controlling the NOX active site. We constructed NOX2 chimeras in which NIS had been deleted or exchanged with those from other NOXs (NIS1, 3 and 4). All contained functional heme and were expressed normally at the plasma membrane of differentiated PLB-985 cells. However, NOX2-ΔNIS and NOX2-NIS1 had neither NADPH-oxidase nor reductase activity and exhibited abnormal translocation of p47phox and p67phox to the phagosomal membrane. This suggested a functional role of NIS. Interestingly after activation, NOX2-NIS3 cells exhibited superoxide overproduction compared with wild-type cells. Paradoxically, the Vmax of purified unstimulated NOX2-NIS3 was only one-third of that of WT-NOX2. We therefore hypothesized that post-translational events regulate NOX2 activity and differ between NOX2-NIS3 and WT-NOX2. We demonstrated that Ser486, a phosphorylation target of ataxia telangiectasia mutated kinase (ATM kinase) located in the NIS of NOX2 (NOX2-NIS), was phosphorylated in purified cytochrome b558 after stimulation with phorbol 12-myristate-13-acetate (PMA). Moreover, ATM kinase inhibition and a NOX2 Ser486Ala mutation enhanced NOX activity whereas a Ser486Glu mutation inhibited it. Thus, the absence of Ser486 in NIS3 could explain the superoxide overproduction in the NOX2-NIS3 mutant. These results suggest that PMA-stimulated NOX2-NIS phosphorylation by ATM kinase causes a dynamic switch that deactivates NOX2 activity. We hypothesize that this downregulation is defective in NOX2-NIS3 mutant because of the absence of Ser486.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Regulação da Expressão Gênica , NADPH Oxidase 2/metabolismo , Fagócitos/metabolismo , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , NADPH Oxidase 2/genética , Fagócitos/enzimologia , Fosforilação , Transdução de Sinais
14.
Free Radic Res ; 51(4): 389-396, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28427294

RESUMO

Vascular calcification is a common feature in atherosclerosis and associates with cardiovascular events. Oxidative stress may be involved in the pathogenesis of vascular calcification. Previous studies have shown that the phagocytic NADPH oxidase is associated with atherosclerosis. The objective of the present study was to investigate the association between phagocytic NADPH oxidase-mediated superoxide production and coronary artery calcium (CAC). NADPH oxidase-mediated superoxide production was determined by chemiluminescence and CAC by computed tomography in 159 asymptomatic men free of overt clinical atherosclerosis. Multivariate linear regression analyses were used to assess the relationship between CAC and NADPH oxidase-mediated superoxide production. Compared with individuals in the lowest score of CAC (= 0 Agatston units), those in the upper score (>400 Agatston units) showed higher superoxide production (p < 0.05). In correlation analysis, superoxide production positively (p < 0.01) correlated with CAC, which in multivariate analysis remained significant after adjusting for age, HDL-cholesterol, triglycerides, body mass index, smoking, arterial hypertension and diabetes mellitus. In conclusion, in a population of men without clinically overt atherosclerotic disease, increased NADPH oxidase-mediated superoxide production associated with enhanced CAC. Albeit descriptive, these findings suggest a potential involvement of phagocytic NADPH oxidase-mediated oxidative stress in CAC.


Assuntos
Doenças Assintomáticas , Cálcio/metabolismo , Vasos Coronários/metabolismo , Vasos Coronários/patologia , NADPH Oxidases/metabolismo , Fagócitos/enzimologia , Calcificação Vascular/enzimologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estresse Oxidativo , Superóxidos/metabolismo , Calcificação Vascular/metabolismo
15.
Inflammation ; 40(1): 123-135, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27785664

RESUMO

Patients with chronic granulomatous disease (CGD) have mutated phagocyte NADPH oxidase, resulting in reduced production of reactive oxygen species (ROS). While the mechanism underlying hyperinfection in CGD is well understood, the basis for inflammatory disorders that arise in the absence of evident infection has not been fully explained. This study aimed to evaluate the effect of phagocyte NADPH oxidase deficiency on lung inflammation induced by nonviable Candida albicans (nCA). Mice deficient in this enzyme (CGD mice) showed more severe neutrophilic pneumonia than nCA-treated wild-type mice, which exhibited significantly higher lung concentrations of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and keratinocyte-derived chemokine (KC). Neutralization of these proinflammatory mediators significantly reduced neutrophil infiltration. In vitro, production of IL-1ß and TNF-α from neutrophils and that of KC from macrophages was enhanced in nCA-stimulated neutrophils from CGD mice. Expression of IL-1ß mRNA was higher in the stimulated CGD neutrophils than in the stimulated wild-type cells, concomitant with upregulation of nuclear factor (NF)-κB and its upstream regulator extracellular-signal regulated kinase (ERK) 1/2. Pretreatment with an NADPH oxidase inhibitor significantly enhanced IL-1ß production in the wild-type neutrophils stimulated with nCA. These results suggest that lack of ROS production because of NADPH oxidase deficiency results in the production of higher levels of proinflammatory mediators from neutrophils and macrophages, which may at least partly contribute to the exacerbation of nCA-induced lung inflammation in CGD mice.


Assuntos
Inflamação/enzimologia , NADPH Oxidases/deficiência , Fagócitos/enzimologia , Pneumonia/enzimologia , Animais , Candida albicans/patogenicidade , Quimiocinas/metabolismo , Doença Granulomatosa Crônica , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
FASEB J ; 31(2): 663-673, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27799347

RESUMO

The phagocyte NADPH oxidase 2 (Nox2) is an enzymatic complex that is involved in innate immunity, notably via its capacity to produce toxic reactive oxygen species. Recently, a proteomic analysis of the constitutively active Nox2 complex, isolated from neutrophil fractions, highlighted the presence of 6-phosphofructo-2-kinase (PFK-2). The purpose of this work was to study the relationship between PFK-2 and NADPH oxidase in neutrophils. Data have underlined a specific association of the active phosphorylated form of PFK-2 with Nox2 complex in stimulated neutrophils. In its active form, PFK-2 catalyzes the production of fructose-2,6-bisphosphate, which is the main allosteric activator of phosphofructo-1-kinase, the limiting enzyme in glycolysis. Pharmacologic inhibition of PFK-2 phosphorylation and cell depletion in PFK-2 by a small interfering RNA strategy led to a decrease in the glycolysis rate and a reduction in NADPH oxidase activity in stimulated cells. Surprisingly, alteration of Nox2 activity impacted the glycolysis rate, which indicated that Nox2 in neutrophils was not only required for reactive oxygen species production but was also involved in supporting the energetic metabolism increase that was induced by inflammatory conditions. PFK-2 seems to be a strategic element that links NADPH oxidase activation and glycolysis modulation, and, as such, is proposed as a potential therapeutic target in inflammatory diseases.-Baillet, A., Hograindleur, M.-A., El Benna, J., Grichine, A., Berthier, S., Morel, F., Paclet, M.-H. Unexpected function of the phagocyte NADPH oxidase in supporting hyperglycolysis in stimulated neutrophils: key role of 6-phosphofructo-2-kinase.


Assuntos
Glucose/metabolismo , Glicólise/fisiologia , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Fagócitos/enzimologia , Fosfofrutoquinase-2/metabolismo , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Humanos , NADPH Oxidases/genética , Fosfofrutoquinase-2/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno , Acetato de Tetradecanoilforbol/farmacologia
17.
FEMS Microbiol Rev ; 41(2): 139-157, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27965320

RESUMO

Dysfunction of phagocytes is a relevant risk factor for staphylococcal infection. The most common hereditary phagocyte dysfunction is chronic granulomatous disease (CGD), characterized by impaired generation of reactive oxygen species (ROS) due to loss of function mutations within the phagocyte NADPH oxidase NOX2. Phagocytes ROS generation is fundamental to eliminate pathogens and to regulate the inflammatory response to infection. CGD is characterized by recurrent and severe bacterial and fungal infections, with Staphylococcus aureus as the most frequent pathogen, and skin and lung abscesses as the most common clinical entities. Staphylococcus aureus infection may occur in virtually any human host, presumably because of the many virulence factors of the bacterium. However, in the presence of functional NOX2, staphylococcal infections remain rare and are mainly linked to breaches of the skin barrier. In contrast, in patients with CGD, S. aureus readily survives and frequently causes clinically apparent disease. Astonishingly, little is known why S. aureus, which possesses a wide range of antioxidant enzymes (e.g. catalase, SOD), is particularly sensitive to control through NOX2. In this review, we will evaluate the discovery of CGD and our present knowledge of the role of NOX2 in S. aureus infection.


Assuntos
Doença Granulomatosa Crônica/complicações , Micoses/etiologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Fagócitos/enzimologia , Infecções Estafilocócicas/etiologia , Doença Granulomatosa Crônica/enzimologia , Doença Granulomatosa Crônica/genética , Micoses/patologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus
19.
Naunyn Schmiedebergs Arch Pharmacol ; 389(7): 723-37, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27030393

RESUMO

In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVß3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVß3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.


Assuntos
Anti-Inflamatórios/farmacologia , Venenos de Crotalídeos/química , Desintegrinas/farmacologia , Lipopolissacarídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Peptídeos/farmacologia , Fagócitos/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/metabolismo , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiotaxia/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Desintegrinas/isolamento & purificação , Desintegrinas/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Humanos , Mediadores da Inflamação/metabolismo , Integrina alfaVbeta3/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Fagócitos/enzimologia , Fosforilação , Ligação Proteica , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
20.
Sci Rep ; 6: 23783, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27032691

RESUMO

In this study, three typical members representative of different arginine metabolic pathways were firstly identified from Apostichopus japonicus, including nitric oxide synthase (NOS), arginase, and agmatinase. Spatial expression analysis revealed that the AjNOS transcript presented negative expression patterns relative to those of Ajarginase or Ajagmatinase in most detected tissues. Furthermore, Vibrio splendidus-challenged coelomocytes and intestine, and LPS-exposed primary coelomocytes could significantly induce AjNOS expression, followed by obviously inhibited Arginase and AjAgmatinase transcripts at the most detected time points. Silencing the three members with two specific siRNAs in vivo and in vitro collectively indicated that AjNOS not only compete with Ajarginase but also with Ajagmatinase in arginine metabolism. Interestingly, Ajarginase and Ajagmatinase displayed cooperative expression profiles in arginine utilization. More importantly, live pathogens of V. splendidus and Vibrio parahaemolyticus co-incubated with primary cells also induced NO production and suppressed arginase activity in a time-dependent at an appropriate multiplicity of infection (MOI) of 10, without non-pathogen Escherichia coli. When increasing the pathogen dose (MOI = 100), arginase activity was significantly elevated, and NO production was depressed, with a larger magnitude in V. splendidus co-incubation. The present study expands our understanding of the connection between arginine's metabolic and immune responses in non-model invertebrates.


Assuntos
Arginase/metabolismo , Arginina/metabolismo , Interações Hospedeiro-Patógeno , Óxido Nítrico Sintase/metabolismo , Pepinos-do-Mar/imunologia , Ureo-Hidrolases/metabolismo , Vibrio/fisiologia , Animais , Arginase/antagonistas & inibidores , Arginase/genética , DNA Complementar/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Intestinos/microbiologia , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/genética , Fagócitos/enzimologia , Fagócitos/microbiologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/genética , Distribuição Aleatória , Pepinos-do-Mar/genética , Pepinos-do-Mar/metabolismo , Pepinos-do-Mar/microbiologia , Ureo-Hidrolases/antagonistas & inibidores , Ureo-Hidrolases/genética , Vibrio parahaemolyticus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...